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ABSTRACT

Thermoelectric power measurements have been made on nonstoichiometric

a-Nb205 over the temperature range from 3000 to 12700K. The measurements

show that, for all compositions in the single-phase, a-Nb205_x region

(0.0012 < x < 0.1545), the majority charge carriers are electrons. These

thermoelectric power data have been interpreted in terms of a simple semi-

conductor exhibiting conduction in a narrow d-band with the conduction

electrons being assigned an effective mass equal to four times that of the

rest mass.

tR. F. Janninck is now associated with kutomatic Electric Laboratories,

Northlake, Illinois.



Thermoelectric Power in Nonstoichiometric a-Nb2 05

R. F. Janninck and D. H. Whitmore

INTRODUCTION

There has been considerable interest shown recently in the electrical

properties of nonstoichiometric a-Nb 205. The work of Kofstad and AndersonI

and Kofstad2 on the thermogravimetric properties of nonstoichiometric a-Nb 2 05
and on the isothermal oxygen partial pressure dependence of the electrical

conductivity has been interpreted on the basis of an oxygen-ion defect structure

occurring in the nonstoichiometric state. The oxygen ion vacancy is believed

to be capable of contributing one or both of its trapped electrons in the

conduction process.

Valletta3 has recently reported on the electrical conductivity and thermo-

electric power of heavily, tungsten doped Nb2 05 . He interpreted his data in

terms of mixed-valence semiconduction, ascribing the observed thermoelectric

power to an entropy of mixing of electrons on cation sites. However, the

experimental values at lower temperatures are much lower than would be predicted

by such an entropy of mixing term.

Recently, Janninck and Whitmore4 have measured the electrical conductivity

of nonstoichiometric a-Nb 20 5 in specimens of fixed oxygen concentrations.

Their observations may also be rationalized in terms of a nonstoichiometric

oxygen-ion defect structure; however, it was found difficult to interpret the

negative temperature coefficient of the electrical conductivity at high tem-

peratures in terms of a hopping-type conduction mechanism which has been

suggested for this type of material.3'5' 6  Instead, this phenomenon was inter-

preted in terms of donor exhaustion at high temperatures with conduction

occurring in a narrow d-band.

The purpose of the present investigation was to systematically measure

the thermoelectric power of nonstoichiometric a-Nb 205 in an attempt to gain a

better understanding of the mechanism of electrical conduction in this oxide.
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EXPERIMENTAL DETAILS

The experimental technique employed in this investigation was very similar

to that used in the measurement of the electrical conductivity of nonstoichi-

ometric a-Nb 205.. The four electrical probes of the conductivity jig were

replaced with two platinum vs platinum - 10% rhodium thermocouples which had

been calibrated against each other so that the errors involved in the measure-

ment of small temperature differences would be minimized. The platinum legs

of the thermocouples immediately adjacent to the junctions were pressed against

the ends of the specimen by means of the quartz jig. Both the temperature at

each end of the specimen and the thermoelectric voltage of the specimen between

the two platinum probes were measured with the aid of a Leeds and Northrup type

K-2 potentiometer. A small auxiliary heater was added at one end of the speci-

men jig so that a temperature gradient could be established along the oxide

specimen.

The specimens employed in this investigation were identical to those used

in the electrical conductivity experiments which have been previously reported. 4

The specimens were prepared from high-purity oxide powder* by pressing in a

steel die to a pressure of 20,000 psi and sintering at 13900 C for 3 hours. It

has been demonstrated that this treatment produces a very dense a-Nb205 speci-

men. 7  The thermoelectric power specimens were cut from the sintered bars so

as to have an average size of 1.5 cm long by 0.5 cm wide by 0.2 cm thick and

a weight of approximately 700 milligrams.
The departures from stoichiometry were produced by means of an isopiestic

reduction technique4'8 which was followed by an homogenization anneal at 1100I C

for several days.
The compositional state or oxygen content of the specimens, prior to and

following the thermoelectric power measurements, was determined by means of

weight measurements, assuming all of the detectable weight loss was due to a

High purity Nb2 05 powder was kindly supplied by the Fansteel Metallurgical
Corp., North Chicago, Illinois, with a total reported impurity content of
< 1250 ppm. Identical results were obtained with specimens made from high
purity Nb2 05 powder obtained from the Johnson-Matthey Co., Ltd., with a
reported purity of Ta < 100 ppm, Si 30 ppm, Fe 10 pPM, and Mg < 1 ppa.
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loss of oxygen from stoichiometric Nb2 05 (the state obtained by firing Nb2 05

in air). This assumption was verified by weighing a specimen before reduction,

after reduction, and again after reoxidation. The initial and final oxidized

weights of the specimen were identical within the precision of weighing

(+ 20 ýLg) for several cycles.

By flowing a highly purified argon gas over the nonstoichiometric specimen,

the composition could be held reasonably constant during the course of making

the measurements at elevated temperatures. In the case of each thermoelectric

power measurement, the temperature of the specimen was allowed to reach a

steady value before the temperature gradient and the thermoelectric voltage

were measured. The thermoelectric power, Q, is taken as the thermoelectric

voltage divided by the temperature difference across the probes. A tempera-
ture difference of approximately 1O0 C was maintained between the probes.

RESULTS AND DISCUSSION

The thermoelectric power of pressed-and-sintered a-Nb205-x was measured

as a function of the composition (0.0012 < x • 0.1545) and as a function of

temperature over the range 3000 to 1270 0 K. This compositional range covers

the entire range of stability for the homogeneous phase except for compositions

very close to stoichiometry where a fixed oxygen composition could not be

maintained in the specimen by means of the present experimental technique.

Figures 1 to 3 show the temperature dependence of the thermoelectric power for

the various states of nonstoichiometry. The specimen numbers and compositional

data are listed in Table I. It is noteworthy that the present data show this

oxide to be an n-type semiconductor at all times.

The electrical properties can be accounted for on the basis of a standard

semiconductor with a simple band structure. In the light of the earlier elec-

trical conductivity data reported for this oxide, 4 the compositions and tem-

peratures used here correspond to those of the exhaustion region of the con-

ductivity, except in the case of specimens exhibiting the smallest departures

from stoichiometry at the lowest temperatures where complete exhaustion of

the donor states may not have occurred.



4

In such an exhaustion region, the simple band theory for an n-type- ex-

trinsic semiconductor9 predicts that the thermoelectric power, Q, will be given
by the expression:

Q [2 _k - tn n(iUn
e e

where ne is the number of conducting electrons per cm3, k is Boltzmann's
constant, e is the electronic charge, and no is the effective density of

electronic states at the conduction bend edge. This last quantity is given

by the relation:

no 2 (2w m* kT)3/2 (2)
0 h3

where ei is the effective mass of the electron, T is the absolute temperature,
and h is Planck's constant.

If it is assumed that the nonstoichiosetric defect in a-Nb 205 -x is an
oxygen-ion vacancy which has contributed both of its trapped electrons to the
conduction process, then, in an exhaustion region, ne = 2 ND where ND is the

number of oxygen ion vacancies per cm3 in the nonstoichiometric oxide. Assign-
ing to the effective mass of the conduction electrons a value of 4 mo, Eq. (1)

becomes

e (2_ -[ oc2/JD + U (3)e I h3

Since the effective electron mass for nonstoichiometric rutile (TiO2 ) has been
estimated to be 12 to 32 times that of the rest mass, 1 0' 1 1 an effective mass
value of 4 mo in the case of nonstoichiometric a-Nb2 05 appears to be reasonable

Figure 4 is a plot of the isothermal variation at 5000 and 12700 K of the
thermoelectric power measurements with composition. Also indicated in this
figure are the variations in thermoelectric power to be expected at the same
two temperatures on the basis of Eq. (3). It is noteworthy that rather good
agreement exists between the predictions of Eq. (3) and the empirical results.

If, on the other band, a polaron conduction mechanism is asumed for this
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oxide in spite of the observation of an exhaustion region in the electrical
conductivity of this nonstoichiometric oxide, an expression for the thermo-
electric power may be obtained in a manner analogous to that given by Aronson

et al12 for nonstoichiometric UO2 . Accordingly, the thermoelectric power
expression for tungsten-doped, a-Nb2 05 has been reported to be:3

9 add. d~~j (4.)
e e aT e

where 9add is the entropy change due to factors such as vibrational entropy,
Qq is the heat of transport of charge carriers, Nq is the number of charge
carriers, and 9q is the entropy change due to addition of a charge carrier to

the aggregate of cation sites. If only the entropy of mixing term is considered,
Eq. (4) reduces to

Q =(5)

where x is a measure of the departure from stoichiometry as indicated by the
formula Nb2 05-x (see Table I for the magnitude of this quantity).

For comparison purposes, a plot of Eq. (5) is also given in Fig. 4 by the
dashed line. It should be observed that agreement with the experimental data
at 12700 K is not nearly as good in the case of Eq. (5) as that exhibited by
Eq. (3). Furthermore, the agreement becomes poorer as the temperature is

lowered because the relation given in Eq. (5) shows no temperature dependence.
This disparity between the thermoelectric results predicted by Eq. (5) and

experiment, as well as the observation of an exhaustion region in the electrical
conductivity, tends to indicate that conduction occurs in a narrow d-band.



TABLE I

Table of Specimen Compositions and Defect Concentrations

x: in Oxygen Vacancy
Specimen Initial Final Average Concentration

Number Wt.% Loss Wt.% Loss Wt.% Loss Nb2 05-x cm"3

59-17 0.00634 0.00817 0.00725 0.0012 1.24 x 1019

49-23 0.0134 0.00635 0.00987 0.0016 1.69 x 1019

68-15-JMa -- 0.0119 0 , 0 1 1 9 b 0.0020 2.03 x 1019

64-19 0.00860 0.0195 0.0141 0.0023 2.41 x 1019

62-20 0.0300 0.0274 0.0287 0.0048 4.91 x 1019

45-21 0.0364 0.0382 0.0373 0.0062 6.38 x 10 19

63-16 0.0538 0.0572 0.0555 0.0092 9.49 x 1019

45-13 0.0760 0.0687 0.0723 0.0120 1.24 x 1020

60-14 0.0795 0.0801 0.0798 0.0133 1.36 x 1020

59-28 0.114 0.110 0.112 0.0186 1.91 x 1020

60-27 0.243 0.230 0.236 0.0392 4.04 x 1020

68-25-JMe 0.250 0.233 0.241 0.0400 4.12 x 1020

45-2 -- 0.458 0.4 58b 0.0761 7.83 x 1020

63-26 0.575 0.529 0.552 0.0916 9.44 x 1020

64-24 0.683 0.654 0.668 0.1110 1.14 x 1021

49-12 0.958 0.903 0.930 0.1545 1.59 x 1021

a Johnson-Matthey material.

b Final composition only.

6
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FIGURE CAPTIONS

Fig. 1 - Thermoelectric power of nonstoichiometric a-Nb205 as a function

of temperature for several different compositions.
Fig. 2 - Thermoelectric power of nonstoichiametric a-Nb205 as a function

of temperature for several different compositions.

Fig. 3 - Thermoelectric power of nonstoichiometric a-Nb2 05 as a function
of temperature for several different compositions.

Fig. 4 - The compositional dependence of the isothermal thermoelectric

power of Nb205 -x at 5000 and 12700 K.
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